Blog gratis
Reportar
Editar
¡Crea tu blog!
Compartir
¡Sorpréndeme!
"Educación tecnológica"
En este espacio podrás encontrar material de lectura, actividades, novedades para compartir, intercambiar, todo lo referido a educación tecnológica
img
img

Sistemas de Control

18 de Septiembre, 2010  ·  General
Normal 0 false 21 false false false ES-AR X-NONE X-NONE

Los sistemas de control según la Teoría Cibernética se aplican en esencia para los organismos vivos, las máquinas y las organizaciones. Estos sistemas fueron relacionados por primera vez en 1948 por Norbert Wiener en su obra Cibernética y Sociedad con aplicación en la teoría de los mecanismos de control. Un sistema de control está definido como un conjunto de componentes que pueden regular su propia conducta o la de otro sistema con el fin de lograr un funcionamiento predeterminado, de modo que se reduzcan las probabilidades de fallos y se obtengan los resultados buscados. Hoy en día los procesos de control son síntomas del proceso industrial que estamos viviendo. Estos sistemas se usan típicamente en sustituir un trabajador pasivo que controla una determinado sistema ( ya sea eléctrico, mecánico, etc. ) con una posibilidad nula o casi nula de error, y un grado de eficiencia mucho más grande que el de un trabajador. Los sistemas de control más modernos en ingeniería automatizan procesos en base a muchos parámetros y reciben el nombre de Controladores de Automatización Programables (PAC).


Los sistemas de control deben conseguir los siguientes objetivos:

1. Ser estables y robustos frente a perturbaciones y errores en los modelos.

2. Ser eficiente según un criterio preestablecido evitando comportamientos bruscos e irreales.

Necesidades de la supervisión de procesos

Limitaciones de la visualización de los sistemas de adquisición y control.

Control vs Monitorización

Control software. Cierre de lazo de control.

Recoger, almacenar y visualizar información.

Minería de datos.

 

Contenido

Clasificación de los Sistemas de Control según su comportamiento

Definiciones

Supervisión: acto de observar el trabajo Y tareas de otro (individuo o máquina) que puede no conocer el tema en profundidad.

1. Sistema de control de lazo abierto: Es aquel sistema en que solo actúa el proceso sobre la señal de entrada y da como resultado una señal de salida independiente a la señal de entrada, pero basada en la primera. Esto significa que no hay retroalimentación hacia el controlador para que éste pueda ajustar la acción de control. Es decir, la señal de salida no se convierte en señal de entrada para el controlador. Ejemplo 1: el llenado de un tanque usando una manguera de jardín. Mientras que la llave siga abierta, el agua fluirá. La altura del agua en el tanque no puede hacer que la llave se cierre y por tanto no nos sirve para un proceso que necesite de un control de contenido o concentración. Ejemplo 2: Al hacer una tostada, lo que hacemos es controlar el tiempo de tostado de ella misma entrando una variable (en este caso el grado de tostado que queremos). En definitiva, el que nosotros introducimos como parámetro es el tiempo.

Estos sistemas se caracterizan por:

  • Ser sencillos y de fácil concepto.
  • Nada asegura su estabilidad ante una perturbación.
  • La salida no se compara con la entrada.
  • Ser afectado por las perturbaciones. Éstas pueden ser tangibles o intangibles.
  • La precisión depende de la previa calibración del sistema.

2. Sistema de control de lazo cerrado: Son los sistemas en los que la acción de control está en función de la señal de salida. Los sistemas de circuito cerrado usan la retroalimentación desde un resultado final para ajustar la acción de control en consecuencia. El control en lazo cerrado es imprescindible cuando se da alguna de las siguientes circunstancias:

- Cuando un proceso no es posible de regular por el hombre.

- Una producción a gran escala que exige grandes instalaciones y el hombre no es capaz de manejar.

- Vigilar un proceso es especialmente duro en algunos casos y requiere una atención que el hombre puede perder fácilmente por cansancio o despiste, con los consiguientes riesgos que ello pueda ocasionar al trabajador y al proceso.

Sus características son:

  • Ser complejos, pero amplios en cantidad de parámetros.
  • La salida se compara con la entrada y le afecta para el control del sistema.
  • Su propiedad de retroalimentación.
  • Ser más estable a perturbaciones y variaciones internas.

Un ejemplo de un sistema de control de lazo cerrado sería el termotanque de agua que utilizamos para bañarnos. Otro ejemplo sería un regulador de nivel de gran sensibilidad de un depósito. El movimiento de la boya produce más o menos obstrucción en un chorro de aire o gas a baja presión. Esto se traduce en cambios de presión que afectan a la membrana de la válvula de paso, haciendo que se abra más cuanto más cerca se encuentre del nivel máximo.

Tipos de Sistemas de Control

Los sistemas de control son agrupados en tres tipos básicos:

1. Hechos por el hombre. Como los sistemas eléctricos o electrónicos que están permanentemente capturando señales de estado del sistema bajo su control y que al detectar una desviación de los parámetros pre-establecidos del funcionamiento normal del sistema, actúan mediante sensores y actuadores, para llevar al sistema de vuelta a sus condiciones operacionales normales de funcionamiento. Un claro ejemplo de este será un termostato, el cual capta consecutivamente señales de temperatura. En el momento en que la temperatura desciende o aumenta y sale del rango, este actúa encendiendo un sistema de refrigeración o de calefacción.

1.1 Por su causalidad pueden ser: causales y no causales. Un sistema es causal si existe una relación de causalidad entre las salidas y las entradas del sistema, más explícitamente, entre la salida y los valores futuros de la entrada.

1.2 Según el número de entradas y salidas del sistema, se denominan:

1.2.1 De una entrada y una salida o SISO (single input, single output).

1.2.2 De una entrada y múltiples salidas o SIMO (single input, multiple output).

1.2.3 De múltiples entradas y una salida o MISO (multiple input, single output).

1.2.4 De múltiples entradas y múltiples salidas o MIMO (multiple input, multiple output).

1.3 Según la ecuación que define el sistema, se denomina:

1.3.1 Lineal, si la ecuación diferencial que lo define es lineal.

1.3.2 No lineal, si la ecuación diferencial que lo define es no lineal.

1.4 Las señales o variables de los sistema dinámicos son función del tiempo. Y de acuerdo con ello estos sistemas son:

1.4.1 De tiempo continuo, si el modelo del sistema es una ecuación diferencial, y por tanto el tiempo se considera infinitamente divisible. Las variables de tiempo continuo se denominan también analógicas.

1.4.2 De tiempo discreto, si el sistema está definido por una ecuación por diferencias. El tiempo se considera dividido en períodos de valor constante. Los valores de las variables son digitales (sistemas binario, hexadecimal, etc), y su valor solo se conoce en cada período.

1.4.3 De eventos discretos, si el sistema evoluciona de acuerdo con variables cuyo valor se conoce al producirse un determinado evento.

1.5 Según la relación entre las variables de los sistemas, diremos que:

1.5.1 Dos sistemas están acoplados, cuando las variables de uno de ellos están relacionadas con las del otro sistema.

1.5.2 Dos sistemas están desacoplados, si las variables de ambos sistemas no tienen ninguna relación.

1.6 En función de la evolución de las variables de un sistema en el tiempo y el espacio, pueden ser:

1.6.1 Estacionarios, cuando sus variables son constantes en el tiempo y en el espacio.

1.6.2 No estacionarios, cuando sus variables no son constantes en el tiempo o en el espacio.

1.7 Según sea la respuesta del sistema (valor de la salida) respecto a la variación de la entrada del sistema:

1.7.1 El sistema se considera estable cuando ante una variación muy rápida de la entrada se produce una respuesta acotada de la salida.

1.7.2 El sistema se considera inestable cuando ante una entrada igual a la anteriormente se produce una respuesta no acotada de la salida.

1.8 Si se comparan o no, la entrada y la salida de un sistema, para controlar esta última, el sistema se denomina:

1.8.1 Sistema en lazo abierto, cuando la salida para ser controlada, no se compara con el valor de la señal de entrada o señal de referencia.

1.8.2 Sistema en lazo cerrado, cuando la salida para ser controlada, se compara con la señal de referencia. La señal de salida que es llevada junto a la señal de entrada, para ser comparada, se denomina señal de feedback o de retroalimentación.

1.9 Según la posibilidad de predecir el comportamiento de un sistema, es decir su respuesta, se clasifican en:

1.9.1 Sistema determinista, cuando su comportamiento futuro es predecible dentro de unos límites de tolerancia.

1.9.2 Sistema estocástico, si es imposible predecir el comportamiento futuro. Las variables del sistema se denominan aleatorias.

2. Naturales, incluyendo sistemas biológicos. Por ejemplo, los movimientos corporales humanos como el acto de indicar un objeto que incluye como componentes del sistema de control biológico los ojos, el brazo, la mano, el dedo y el cerebro del hombre. En la entrada se procesa el movimiento y la salida es la dirección hacia la cual se hace referencia.

3. Cuyos componentes están unos hechos por el hombre y los otros son naturales. Se encuentra el sistema de control de un hombre que conduce su vehículo. Éste sistema está compuesto por los ojos, las manos, el cerebro y el vehículo. La entrada se manifiesta en el rumbo que el conductor debe seguir sobre la vía y la salida es la dirección actual del automóvil. Otro ejemplo puede ser las decisiones que toma un político antes de unas elecciones. Éste sistema está compuesto por ojos, cerebro, oídos, boca. La entrada se manifiesta en las promesas que anuncia el político y la salida es el grado de aceptación de la propuesta por parte de la población.

4. Un sistema de control puede ser neumático, eléctrico, mecánico o de cualquier tipo, su función es recibir entradas y coordinar una o varias respuestas según su lazo de control (para lo que está programado).

5. Control Predictivo, son los sistemas de control que trabajan con un sistema predictivo, y no activó como el tradicional ( ejecutan la solución al problema antes de que empiece a afectar al proceso). De esta manera, mejora la eficiencia del proceso contrarestando rápidamente los efectos.

Características de un Sistema de Control

  1. Señal de Corriente de Entrada: Considerada como estímulo aplicado a un sistema desde una fuente de energía externa con el propósito de que el sistema produzca una respuesta específica.
  2. Señal de Corriente de Salida: Respuesta obtenida por el sistema que puede o no relacionarse con la respuesta que implicaba la entrada.
  3. Variable Manipulada: Es el elemento al cual se le modifica su magnitud, para lograr la respuesta deseada. Es decir, se manipula la entrada del proceso.
  4. Variable Controlada: Es el elemento que se desea controlar. Se puede decir que es la salida del proceso.
  5. Conversión: Mediante receptores se generan las variaciones o cambios que se producen en la variable.
  6. Variaciones Externas: Son los factores que influyen en la acción de producir un cambio de orden correctivo.
  7. Fuente de Energía: Es la que entrega la energía necesaria para generar cualquier tipo de actividad dentro del sistema.
  8. Retroalimentación: La retroalimentación es una característica importante de los sistemas de control de lazo cerrado. Es una relación secuencial de causas y efectos entre las variables de estado. Dependiendo de la acción correctiva que tome el sistema, este puede apoyar o no una decisión, cuando en el sistema se produce un retorno se dice que hay una retroalimentación negativa; si el sistema apoya la decisión inicial se dice que hay una retroalimentación positiva.
  9. Variables de fase: Son la variables que resultan de la transformación del sistema original a la forma canónica controlable. De aqui se obtiene también la matriz de controlabilidad cuyo rango debe ser de orden completo para controlar el sistema.

La Ingeniería en los Sistemas de Control

Los problemas considerados en la ingeniería de los sistemas de control, básicamente se tratan mediante dos pasos fundamentales como son:

  1. El análisis.
  2. El diseño.

En el análisis se investiga las características de un sistema existente. Mientras que en el diseño se escogen los componentes para crear un sistema de control que posteriormente ejecute una tarea particular. Existen dos métodos de diseño:

  1. Diseño por análisis.
  2. Diseño por síntesis.

El diseño por análisis modifica las características de un sistema existente o de un modelo estándar del sistema y el diseño por síntesis en el cual se define la forma del sistema a partir de sus especificaciones.

La representación de los problemas en los sistemas de control se lleva a cabo mediante tres representaciones básicas o modelos:

  1. Ecuaciones diferenciales, integrales, derivadas y otras relaciones matemáticas.
  2. Diagramas en bloque.
  3. Gráficas en flujo de análisis.

Los diagramas en bloque y las gráficas de flujo son representaciones gráficas que pretenden el acortamiento del proceso correctivo del sistema, sin importar si está caracterizado de manera esquemática o mediante ecuaciones matemáticas. Las ecuaciones diferenciales y otras relaciones matemáticas, se emplean cuando se requieren relaciones detalladas del sistema. Cada sistema de control se puede representar teóricamente por sus ecuaciones matemáticas. El uso de operaciones matemáticas es patente en todos los controladores de tipo P, PI y PID, que debido a la combinación y superposición de cálculos matemáticos ayuda a controlar circuitos, montajes y sistemas industriales para así ayudar en el perfeccionamiento de los mismos. que nota

Actuador

Se denominan actuadores a aquellos elementos que pueden provocar un efecto sobre un proceso automatizado.

Los actuadores son dispositivos capaces de generar una fuerza a partir de líquidos, de energía eléctrica y gaseosa. El actuador recibe la orden de un regulador o controlador y da una salida necesaria para activar a un elemento final de control como lo son las válvulas.

Existen varios tipos de actuadores como son:

  • Electronicos
  • Hidráulicos
  • Neumáticos
  • Eléctricos

Los actuadores hidráulicos, neumáticos y eléctricos son usados para manejar aparatos mecatrónicos. Por lo general, los actuadores hidráulicos se emplean cuando lo que se necesita es potencia, y los neumáticos son simples posicionamientos. Sin embargo, los hidráulicos requieren mucho equipo para suministro de energía, así como de mantenimiento periódico. Por otro lado, las aplicaciones de los modelos neumáticos también son limitadas desde el punto de vista de precisión y mantenimiento.

Los actuadores eléctricos también son muy utilizados en los aparatos mecatrónicos, como por ejemplo, en los robots. Los servomotores CA sin escobillas se utilizaran en el futuro como actuadores de posicionamiento preciso debido a la demanda de funcionamiento sin tantas horas de mantenimiento.

Contenido

  • 1 Actuadores hidráulicos
  • 2 Actuadores neumáticos
  • 3 Actuadores eléctricos
  • 4 Partes de un actuador
  • 5 Véase también

Actuadores hidráulicos

Los actuadores hidráulicos, que son los de mayor antigüedad, pueden ser clasificados de acuerdo con la forma de operación, funcionan en base a fluidos a presión. Existen tres grandes grupos:

Actuadores neumáticos

A los mecanismos que convierten la energía del aire comprimido en trabajo mecánico se les denomina actuadores neumáticos. Aunque en esencia son idénticos a los actuadores hidráulicos, el rango de compresión es mayor en este caso, además de que hay una pequeña diferencia en cuanto al uso y en lo que se refiere a la estructura, debido a que estos tienen poca viscosidad.

En esta clasificación aparecen los fuelles y diafragmas, que utilizan aire comprimido y también los músculos artificiales de hule, que últimamente han recibido mucha atención.

De efecto simple

Cilindro neumático

Actuador neumático de efecto doble

Con engranaje

Motor neumático con veleta

Con pistón

Con una veleta a la vez

Multiveleta

Motor rotatorio con pistón

De ranura vertical

De émbolo

Fuelles, diafragma y músculo artificial

Actuadores eléctricos

La estructura de un actuador eléctrico es simple en comparación con la de los actuadores hidráulicos y neumáticos, ya que sólo se requieren de energía eléctrica como fuente de poder. Como se utilizan cables eléctricos para transmitir electricidad y las señales, es altamente versátil y prácticamente no hay restricciones respecto a la distancia entre la fuente de poder y el actuador.

Existe una gran cantidad de modelos y es fácil utilizarlos con motores eléctricos estandarizados según la aplicación. En la mayoría de los casos es necesario utilizar reductores, debido a que los motores son de operación continua.

Utilización de un pistón eléctrico para el accionamiento de una válvula pequeña.

La forma más sencilla para el accionamiento con un pistón, seria la instalación de una palanca solidaria a una bisagra adherida a una superficie paralela al eje del pistón de accionamiento y a las entradas roscadas.

Existen Alambres Musculares®, los cuales permiten realizar movimientos silenciosos sin motores. Es la tecnología más innovadora para robótica y automática, como así también para la implementación de pequeños actuadores.

Los actuadores más usuales son:

  • Cilindros neumáticos e hidráulicos. Realizan movimientos lineales.
  • Motores (actuadores de giro) neumáticos e hidráulicos. Realizan movimientos de giro por medio de energía hidráulica o neumática.
  • Válvulas. Las hay de mando directo, motorizadas, electroneumáticas, etc. Se emplean para regular el caudal de gases y líquidos.
  • Resistencias calefactoras. Se emplean para calentar.
  • Motores eléctricos. Los más usados son de inducción, de continua, sin escobillas y paso a paso.
  • Bombas, compresores y ventiladores. Movidos generalmente por motores eléctricos de inducción.

Transductor

Un transductor es un dispositivo capaz de transformar o convertir un determinado tipo de energía de entrada, en otra de diferente a la salida. El nombre del transductor ya nos indica cual es la transformación que realiza (p.e. electromecánica, transforma una señal eléctrica en mecánica o viceversa), aunque no necesariamente la dirección de la misma. Es un dispositivo usado principalmente en la industria, en la medicina, en la agricultura, en robótica, en aeronáutica, etc. para obtener la información de entornos físicos y químicos y conseguir (a partir de esta información) señales o impulsos eléctricos o viceversa. Los transductores siempre consumen algo de energía por lo que la señal medida resulta debilitada.

Tipos de transductores

Ejemplos

(vibraciones sonoras: oscilaciones en la presión del aire) en energía eléctrica (variaciones de voltaje).

  • Un altavoz también es un transductor electroacústico, pero sigue el camino contrario. Un altavoz transforma la corriente eléctrica en vibraciones sonoras.
  • Otros ejemplos son los teclados comunes que transforman el impulso de los dedos sobre las membranas y éstas generan el código de la tecla presionada.
  • Otro ejemplo es el sistema de alarma de un automóvil, el cual transforma los cambios de presión dentro del vehículo a la activación de dicha alarma. Algunas de estas son termistores, galgas extensiométricas, piezoeléctricos, termostatos, etc.
  • Otro ejemplo es un ventilador.
  • Otro ejemplo es una estufa doméstica.

            http://upload.wikimedia.org/wikipedia/commons/d/d4/Button_hide.png

Sensor

http://upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Hall_sensor_tach.gif/220px-Hall_sensor_tach.gif

http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png

Sensor de efecto Hall.

Un sensor es un dispositivo capaz de medir magnitudes físicas o químicas, llamadas variables de instrumentación, y transformarlas en variables eléctricas. Las variables de instrumentación pueden ser por ejemplo: temperatura, intensidad lumínica, distancia, aceleración, inclinación, desplazamiento, presión, fuerza, torsión, humedad, pH, etc. Una magnitud eléctrica puede ser una resistencia eléctrica (como en una RTD), una capacidad eléctrica (como en un sensor de humedad), una Tensión eléctrica (como en un termopar), una corriente eléctrica (como en un fototransistor), etc.

Un sensor se diferencia de un transductor en que el sensor está siempre en contacto con la variable de instrumentación con lo que Puede decirse también que es un dispositivo que aprovecha una de sus propiedades con el fin de adaptar la señal que mide para que la pueda interpretar otro dispositivo. Como por ejemplo el termómetro de mercurio que aprovecha la propiedad que posee el mercurio de dilatarse o contraerse por la acción de la temperatura. Un sensor también puede decirse que es un dispositivo que convierte una forma de energía en otra. Áreas de aplicación de los sensores: Industria automotriz, Industria aeroespacial, Medicina , Industria de manufactura, Robótica , etc.

Los sensores pueden estar conectados a un computador para obtener ventajas como son el acceso a una base de datos, la toma de valores desde el sensor, etc

Contenido

Características de un sensor

Entre las características técnicas de un sensor destacan las siguientes:

  • Rango de medida: dominio en la magnitud medida en el que puede aplicarse el sensor.
  • Precisión: es el error de medida máximo esperado.
  • Offset o desviación de cero: valor de la variable de salida cuando la variable de entrada es nula. Si el rango de medida no llega a valores nulos de la variable de entrada, habitualmente se establece otro punto de referencia para definir el offset.
  • Linealidad o correlación lineal.
  • Sensibilidad de un sensor: relación entre la variación de la magnitud de salida y la variación de la magnitud de entrada.
  • Resolución: mínima variación de la magnitud de entrada que puede apreciarse a la salida.
  • Rapidez de respuesta: puede ser un tiempo fijo o depender de cuánto varíe la magnitud a medir. Depende de la capacidad del sistema para seguir las variaciones de la magnitud de entrada.
  • Derivas: son otras magnitudes, aparte de la medida como magnitud de entrada, que influyen en la variable de salida. Por ejemplo, pueden ser condiciones ambientales, como la humedad, la temperatura u otras como el envejecimiento (oxidación, desgaste, etc.) del sensor.
  • Repetitividad: error esperado al repetir varias veces la misma medida.

Un sensor es un tipo de transductor que transforma la magnitud que se quiere medir o controlar, en otra, que facilita su medida. Pueden ser de indicación directa (e.g. un termómetro de mercurio) o pueden estar conectados a un indicador (posiblemente a través de un convertidor analógico a digital, un computador y un display) de modo que los valores detectados puedan ser leídos por un humano.

Por lo general, la señal de salida de estos sensores no es apta para su lectura directa y a veces tampoco para su procesado, por lo que se usa un circuito de acondicionamiento, como por ejemplo un puente de Wheatstone, amplificadores y filtros electrónicos que adaptan la señal a los niveles apropiados para el resto de la circuitería.

Resolución y precisión

La resolución de un sensor es el menor cambio en la magnitud de entrada que se aprecia en la magnitud de salida. Sin embargo, la precisión es el máximo error esperado en la medida.

La resolución puede ser de menor valor que la precisión. Por ejemplo, si al medir una distancia la resolución es de 0,01 mm, pero la precisión es de 1 mm, entonces pueden apreciarse variaciones en la distancia medida de 0,01 mm, pero no puede asegurarse que haya un error de medición menor a 1 mm. En la mayoría de los casos este exceso de resolución conlleva a un exceso innecesario en el coste del sistema. No obstante, en estos sistemas, si el error en la medida sigue una distribución normal o similar, lo cual es frecuente en errores accidentales, es decir, no sistemáticos, la repetitividad podría ser de un valor inferior a la precisión.

Sin embargo, la precisión no puede ser de un valor inferior a la resolución, pues no puede asegurarse que el error en la medida sea menor a la mínima variación en la magnitud de entrada que puede observarse en la magnitud de salida.

Tipos de sensores

En la siguiente tabla se indican algunos tipos y ejemplos de sensores electrónicos.

Magnitud

Transductor

Característica

Posición lineal o angular

Potenciómetro

Analógica

Encoder

Digital

Desplazamiento y deformación

Transformador diferencial de variación lineal

Analógica

Galga extensiométrica

Analógica

Magnetoestrictivos

A/D

Magnetorresistivos

Analógica

LVDT

Analógica

Velocidad lineal y angular

Dinamo tacométrica

Analógica

Encoder

Digital

Detector inductivo

Digital

Servo-inclinómetros

A/D

RVDT

Analógica

Giróscopo


Aceleración

Acelerómetro

Analógico

Servo-accelerómetros


Fuerza y par (deformación)

Galga extensiométrica

Analógico

Triaxiales

A/D

Presión

Membranas

Analógica

Piezoeléctricos

Analógica

Manómetros Digitales

Digital

Caudal

Turbina

Analógica

Magnético

Analógica

Temperatura

Termopar

Analógica

RTD

Analógica

Termistor NTC

Analógica

Termistor PTC

Analógica

Bimetal

I/0

Sensores de presencia

Inductivos

I/0

Capacitivos

I/0

Ópticos

I/0 y Analógica

Sensores táctiles

Matriz de contactos

I/0

Piel artificial

Analógica

Visión artificial

Cámaras de video

Procesamiento digital

Cámaras CCD o CMOS

Procesamiento digital

Sensor de proximidad

Sensor final de carrera


Sensor capacitivo


Sensor inductivo


Sensor fotoeléctrico


Sensor acústico (presión sonora)

micrófono


Sensores de acidez

IsFET


Sensor de luz

fotodiodo


Fotorresistencia


Fototransistor


Célula fotoeléctrica


Sensores captura de movimiento

Sensores inerciales


Algunas magnitudes pueden calcularse mediante la medición y cálculo de otras, por ejemplo, la aceleración de un móvil puede calcularse a partir de la integración numérica de su velocidad. La masa de un objeto puede conocerse mediante la fuerza gravitatoria que se ejerce sobre él en comparación con la fuerza gravitatoria ejercida sobre un objeto de masa conocida (patrón).

 

http://upload.wikimedia.org/wikipedia/commons/d/d4/Button_hide.png

Contraer

Wikipedia está cambiando su aspecto.Help us find bugs and complete user interface translations

Comparador

http://upload.wikimedia.org/wikipedia/commons/d/d6/Opampcomparator.png

Representación esquemática de un amplificador operacional funcionando como comparador.

http://upload.wikimedia.org/wikipedia/commons/thumb/d/df/Comparador.png/220px-Comparador.png

Figura1. Circuito integrado 7485 comparador de 4 bits.

http://upload.wikimedia.org/wikipedia/commons/thumb/8/82/Comparadorcascada.png/220px-Comparadorcascada.png

http://bits.wikimedia.org/skins-1.5/common/images/magnify-clip.png

Figura2. Comparador de 8 bits realizado con el circuito integrado 7485.

http://upload.wikimedia.org/wikipedia/commons/thumb/a/ae/Tablaverdadcomparador.png/220px-Tablaverdadcomparador.png

Figura3. Tabla de verdad de un comparador de 4 bits.

Un comparador es un circuito electrónico, ya sea analógico o digital, capaz de comparar una señal de entrada con un determinado valor, variando su salida según el resultado.


Electrónica Analógica

En un circuito electrónico, se llama comparador a un amplificador operacional en lazo abierto (sin realimentación entre su salida y su entrada) y suele usarse para comparar una tensión variable con otra tensión fija que se utiliza como referencia.

Como todo amplificador operacional, un comparador estará alimentado por dos fuentes de corriente contínua (+Vcc, -Vcc). El comparador hace que, si la tensión de entrada en el borne positivo (en el dibujo, V1) es mayor que la tensión conectada al borne negativo (en el dibujo, V2), la salida (Vout en el dibujo) será igual a +Vcc. En caso contrario, la salida tendrá una tensión -Vcc.

Funcionamiento del comparador

Estudiemos el siguiente circuito:

Op-Amp Comparator.svg

En este circuito, estamos alimentando el amplificador operacional (A.O.) con dos tensiones +Vcc = 15V y -Vcc = -15 V. Conectamos la patilla V+ del A.O. a masa (tierra) para que sirva como tensión de referencia, en este caso 0 V. A la entrada V- del A.O. hemos conectado una fuente de tensión (Vi) variable en el tiempo, en este caso es una tensión sinusoidal.

Hay que hacer notar que la tensión de referencia no tiene por qué estar en la entrada V+, también puede conectarse a la patilla V-, en este caso, conectaríamos la tensión que queremos comparar con respecto a la tensión de referencia, a la entrada V+ del A.O.

A la salida (Vo) del A.O. puede haber únicamente dos niveles de tensión que son en nuestro caso 15 ó -15 V (considerando el A.O. como ideal, si fuese real las tensiones de salida serían algo menores).

  • Cuando la tensión sinusoidal Vi toma valores positivos, el A.O. se satura a negativo, esto significa que como la tensión es mayor en la entrada V- que en la entrada V+, el A.O. entrega a su salida una tensión negativa de -15 V.

Electrónica Digital: sistemas combinacionales

Descripción

Reciben esta denominación los sistemas combinacionales que indican si dos datos de 'N' bits son iguales y en el caso que esto no ocurra cuál de ellos es mayor. En el mercado se encuentran, generalmente, como circuito integrados para datos de 4 u 8 bits y entradas que facilitan la conexión en cascada para trabajar con más bits. En la imagen1, se puede observar el esquema de 4 bits. Posee dos tipos de entradas: las de comparación (A0...A3 y B0...B3) y las de expansión (<,=, y >) para la conexión en cascada. La función que realiza el comparador anterior se puede observar en la tabla de verdad que aparece en la imagen3. Se puede observar que las entradas de expansión sólo afectan a las salidas cuando los datos en las entradas A y B son iguales.

En algunos casos es necesario realizar comparaciones entre entradas que tienen un número de bits mayor que el permitido por el integrado, en estos casos se realiza la conexión de varios integrados en cascada. En la figura2 se muestra un Normal 0 21 false false false ES-AR X-NONE X-NONE comparador de 8 bits realizado con el C.I. 7485 de 4 bits
TAGS
,
publicado por andreamartinez a las 14:37 · 1 Comentario  ·  Recomendar
 
Más sobre este tema ·  Participar
Comentarios (1) ·  Enviar comentario
Más información y recursos sobre sistemas de control: http://sistemascontrol.wordpress.com
publicado por Carlos M. Vélez S., el 09.09.2013 23:30
Enviar comentario

Nombre:

E-Mail (no será publicado):

Sitio Web (opcional):

Recordar mis datos.
Escriba el código que visualiza en la imagen Escriba el código [Regenerar]:
Formato de texto permitido: <b>Negrita</b>, <i>Cursiva</i>, <u>Subrayado</u>,
<li>· Lista</li>
Calendario
Ver mes anterior Abril 2024 Ver mes siguiente
DOLUMAMIJUVISA
123456
78910111213
14151617181920
21222324252627
282930
Buscador
Blog   Web
Tópicos
» General (4)
Nube de tags  [?]
Secciones
» Inicio
Enlaces
» Lecciones y Actividades para llevar a cabo en el A
Más leídos
» Sistemas de Control
» ""Leer""
» Mapas Conceptual
» Simulador Lógico
Se comenta...
» Sistemas de Control
1 Comentario: Carlos M. Vélez S.
Al margen
¡Bienvenido a mi Blog!
Te doy la bienvenida a mi espacio en Internet. Puedes publicar tus comentarios si lo deseas.

Disfrútalo!!
Saludos
FULLServices Network | Blog gratis | Privacidad